Modular Tensor Categories, Subcategories, and Galois Orbits
نویسندگان
چکیده
We establish a set of general results to study how the Galois action on modular tensor categories interacts with fusion subcategories. This includes characterization subcategories which are closed under action, and classification factor as product pointed transitive in terms pseudoinvertible objects. As an application, we classify two orbits simple objects nontrivial grading group.
منابع مشابه
Hopf Galois Extension in Braided Tensor Categories
The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...
متن کاملVerlinde conjecture and modular tensor categories
Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n) = 0 for n < 0, V(0) = C1 and the contragredient module V ′ is isomorphic to V as a V -module. (ii) Every N-gradable weak V -module is completely reducible. (iii) V is C2-cofinite. We announce a proof of the Verlinde conjecture for V , that is, of the statement that the matrices formed by the fusion rules amo...
متن کاملOn Classification of Modular Tensor Categories
We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular S-matrix S and −S has both topological and physical significance, so in our convention there are a total of 70 UMTCs of rank ≤ 4. In particular, there are two trivial UMTCs with S = (±1). Each such UMTC can be...
متن کاملSubcategories and Products of Categories
The subcategory of a category and product of categories is defined. The inclusion functor is the injection (inclusion) map E ↪→ which sends each object and each arrow of a Subcategory E of a category C to itself (in C). The inclusion functor is faithful. Full subcategories of C, that is, those subcategories E of C such that HomE(a,b) = HomC(b,b) for any objects a,b of E, are defined. A subcateg...
متن کاملGalois Categories
In abstract algebra, we considered finite Galois extensions of fields with their Galois groups. Here, we noticed a correspondence between the intermediate fields and the subgroups of the Galois group; specifically, there is an inclusion reversing bijection that takes a subgroup to its fixed field. We notice a similar relationship in topology between the fundamental group and covering spaces. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2023
ISSN: ['1531-586X', '1083-4362']
DOI: https://doi.org/10.1007/s00031-022-09787-9